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We consider the problem of control and stabilization with respect to position 
coordinates and momenta of a holonomic system with ignorable coordinates 
by means of controls applied to the system, in particular. only relative to the 

ignorable coordinates. The problem is solved on the basis of methods from 
stability theory [l] and control theory [2]. Examples are presented. 

We consider a holonomic mechanical system whose generalized coordinates and mo- 

menta are denoted by qi, pi (i = 1, . . . . n). The equations of motion of the system are 
written in the form of canonic Hamiltonian equations 

dqi i?H dPi CM _-;:-, -z2tz 

dt aPi dt 
-_+ 

aqi Qi (i = 2. ..*, n) (1) 

where H = H (t, qi, pi) is the Hamiltonian function, Qi = Qi (t, 42, pi) are ge- 
neralized nonpotential forces. We assume that the functions H (t, qi, pi) and Qi (t, 

qi, pi) do not depend explicitly on coordinates qa, i. e. the identities 

aH 0 aQi _ o 
-G, _= 

@a a% (i = 2, ..,, n; a = k + 1, ..*, nf 
are fulfilled. We call such coordinates qa ignorable coordinates; in case Qa # 0 they 

are sometimes called quasi-ignorable coordinates. The remaining coordinates qj (i = 

1 ,“.I k) are called position coordinates. 

When conditions (2) are fulfilled the study of the system’s motion is reduced to the 

investigation of the 2k equations 

dqj aH dPj _ a~ -- -apjf dt 
-- 

dt dq + Qj (i = 1, . . . . k) 
j 

for the position coordinates and momenta and of the n - k equations 

dp,!dt = Qa (cl = k + 1, . . . . n) (4) 
for the ignorable momenta, after the integration of which the ignorable coordinates are 

determined by quadratures [ 11. Thus, when ignorable coordinates are present it is possible 

to disregard them and to investigate the system of Eqs. (3). (4) of order n f k instead 
of the original system of Eqs. (1) of order 2n . 

For Eqs. (3), (4) we can pose general probIems of control and stabilization of motion 
[Z] , whose solutions would serve for the original system (1) as the solutions of problems 
of control and stabilization of motion with respect to a part of the variables [3], namely, 
with respect to the position coordinates and to all momenta. Besides such a general sta- 
tement of the problem of control and stabilization for system (3). (4) it also makes sense 
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to pose the particular problem when the controls are applied to the mechanical system 

only relative to the ignorable coordinates. This signifies the control of the system by 

the motion of those of its parts which can perform cyclic motions. Thus, for example, 

when the system is under the action only of potential forces and all Qa : 0, by vir- 

tue of Eqs. (4) the ignorable momenta Pa remain constant throughout the whole motion 

and, by selecting their magnitudes in suitable fashion the reduced system (3) can be con- 

trolled and the stabilization of its motions effected. A yet greater possibility for system 

control arises when the momenta Pa do not remain constant but vary in accordance with 

a specific law in correspondence with Eqs. (4), thanks to the fact that the controls Qa 

are applied to the system relative to its ignorable coordinates. Here the functionsPu, 

in Eqs. (3) of motion of the reduced system, play the role of controls whose determination 

depends upon this or the other statement of the problem of controlling the reduced system 

(3) and, by the same token, the original system (1). 

Let us consider this problem in detail. Suppose that for some given generalized forces 

Qa =- Qa (t) (o z IC + 1, . ..) 12) and for all Qj I= 0 (j = I,..., X) ENS. (3), (4) 

admit of the particular solution 

4j mE Qj (t)j Pi ~= PI (4 (5) 
satisfying the given initial conditions. We accept this solution as the unperturbed mo- 

tion of the system. Let the values of the coordinates and momenta in the perturbed mo- 

tion be 4j E qj (t) -+ Ej, Pi E Pi (t) im Vi 

where Ej, qi denote the deviations or variations of the variables Qj and pi. We write 

the equations of perturbed motion of the reduced system in the form of the canonic equa- 

tions dSj 8Ht drlj__ _ dIl1 
lit --1 

drlj dt ~_- dE;j 

(j = 1, . . . . k) 

where the function 

HI (t, cj, qi) = ZZ (t, Qj (t) + Cjy Pi (t) + Yi) - H Ct, 4j Ct)v Pi Ct)) - 

The partial derivatives of function H occurring in this expression have been computed 

;or solution (5). T’ne controls qa satisfy the differential equations 

dqJdt = P,, I’, = Q_ - oil(t) (CL = k-j 1, ._.( n) (7) 

The function 11, (t, Ej, vi) and its first partial derivatives with respect to Sj, Iii 

vanish for ~j : qi :m~ 0. We assume that the function 11, (t. cj, Iii) is a holomor- 

phic function of the variables tj, ~1~. Its Maclaurin series expansion in the variations 

of the variables starts with the quadratic form 

whose coefficients are computed for solution (5). 
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The first approximation of Eqs, (6) of perturbed motion obviously has the form of Poin- 
care’s variational equations [ 11. Introducing the notation 

(8, i = 1, . . . . k; a - I, .‘.) n - I<) 

we write Eqs. (6) of perturbed motion in the form 

$L; 
n-k 

Psrxr + 2 QsaZ~a + X, (t, X,, 24,) (8) f-1 G=l 
(s = 1, . . . . 24 

Here X, (t, x,., U,) are terms which are nonlinear in the variables x,+ u., whose struc- 

ture is clear from the form of the right-hand sides of Eqs. (6). The Hamiltonian function 

H is a second-degree function in the generalized momenta pi, therefore, the function 

H1 is the same in the variables qi. Obviously, the quantities u,can enter into the non- 
linear terms X, of Eqs, (8) only in powers no higher than the first for s = 1, . . . , k and 

no higher than the second for s = k + 1, . . . . 2k. These terms can be represented as a 

sum x, (4 Jr,, u,) = xp i; x6” + xgz) (9) 

where the superscripts denote the degree of homogeneity of the form relative to the 
variables u, E qk+a,. Obviously, X,(O) = Xs (t, x,, 0); the form Xs(‘f = 0 for s = 

I , . . . , 12 . We assume further that the right-hand sides of Eqs. (7) and (8) satisfy the exis- 
tence and uniqueness conditions for the solutions xs and U, = qX+a for any initial con- 

ditions from the domains of definition and continuity of the right-hand sides of Eqs.(7) 

and (8). 
Equations (8) have the standard form of equations of perturbed motion, however, their 

peculiarity is that the coefficients Q sa of the controls u, have the structural constraints 
as being partial derivatives of function fi, while the number of controls does not exceed 
the number n - k of ignorable coordinates. Because of this peculiarity we can conceive 
of cases when a part or even all of the coefficients qsa 3 0 for solution (5) ; in the 

latter case the linear system corresponding to system (8) is uncontrollable by ignorable 
momenta. If, furthermore, all terms in the functions X, for solution (5), depending on 
u,, turn out to be identically zero, then also the nonlinear system (8) is uncontrollable 
by ignorable momenta, Sufficient conditions for the controllablI1~ of a linear nonsta- 

tionary system are given by well known theorems (for example, Theorems -20.1 and 20.2 
in monograph [2]) the fulfillment of whose conditions also solves the problems of opti- 
mal stabilization. 

Of special interest is the problem of the optimal stabilization of stable motions (5) by 
controls on the ignorable coordinates. For Eqs, (S), when all Lc, -= 0, let there exista 
positive-definite function %’ (t, .rs), admitting of an infinitesimal upper bound, whose 
time derivative by virtue of these equations 
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is nonpositive. Then motion (5) is stable with respect to ,z”,~ (s = 1,. . . , 2k) for pa = 

Pa. (t). Let us assume that we wish to make this motion asymptotically stable relative 
to system (8) with u, = LC,’ (t, ~$3 and to minimize the integral 

I = Y,F (t, ZJ -L s (&)lG 

n-_$ 

s (Zb,) = 2 IjjjUiUj (10) 
10 i, j_=Zl 

where F ft, XS) is some nonnegative function yet to be defined, ,Y$ (u.,) is a speci- 

fied positive definite quadratic form with real coefficients f3ij = pji. We obtain the 
solution of this problem in accordance with Theorem 1.1 in [S]. 

We set up the expression 

i. j=l 

which, according to the conditions of the theorem on optimal stabilization in [4], achi- 
eves, for u a = ~,‘,a minimum equal to zero. The optimal controls U,’ satisfy the 
equations 

Since, according to (9) , 
ax(l) 3x9) 

n-k 
as, 
-zzz 
dU 

._A_+-_ 

dUc, OUz 

x,, t zf &xjUj 
a j=l 

where X3, are terms independent of Uj; Xsaj are the coefficients of Uj,in the expres- 

sion for ~~~1~~~~ and X,,j sz 0 for s = 1, . . . . I,, we have that these equations are 

linear algebraic equations 

Here 

Solving these equations, we find 

z&@(t, z,) = - $ (i2) 

Here Am is the cofactor of the element fiTa* of the determinant .?I == 11 pij* 11, 

which, since 11 pij 11 > 0, is p ositive at least for values of variables x8, sufficiently 

small in absolute value. Substituting the values (12) instead of 11, into expression (11) 
and equating it to zero, we obtain an equation from which we find the function 

The time derivative of function v (I, z,,) by virtue of EWE. (8) with II, -= n,’ is 
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n-k 2k 
dV 

-= 
dt 

W (t, 2,) - 2 2 pijZLi”Ujo - 2 g Xp) 
i,j=l s=k+l s 

(14) 

Thus, we have proven 
Theorem 1. If for a system (8), stable with U, = 0 , we know a positive definite 

function lo’ (t, xS), admitting of an infinitesimal upper bound, then it is the optimal 

Liapunov function for system (8) optimized by controls (12) with respect to functional 
(lo), (13) under the condition that function (14) is negative definite. 

The controls which must here be applied to the system relative to the ignorable coor- 
dinates, are determined from Eqs. (7). When the conditions of Theorem 1 are fulfilled 

the unperturbed motion (5) is asymptotically stable with respect to the variables Ej, 

Vj(i = I, . ..T k) and the integral (10) is minimized. In such a formulation the quan- 
tities qlh_+, = &” (t, zS), defined by Eqs. (12)) play the role of optimal controls. 

Note 1. If we can take the function Hi (t, &, vi, 0) = @“, as the function 

k’ (t, z,) of Theorem 1, expression (13) takes the form 

if the function Hi is represented in a form analogous to (9). The quantities X3, enter- 

ing into formula (12) are 
$HF) 

x,, =- 
an, 877, ’ 

X 
8:@) 

k+rva = - d<, dq, 
(r = 1, ._.) /L‘; 3 = li + 1, . . . . n) 

In a number of cases we may be interested in a certain modification of the given 
statement of the problem, when we are required to make the unperturbed motion (5) 
asymptotically stable not only with respect to the variables Ej, qj(j =I, . . . . k) but also 
with respect to the variables ra (u ; 1; + 1, . . . . n). In this case the role of the 
controls is played by the quantities P, = P, (t, Ej, qi). This problem, as the prece- 

ding one, can be solved with the aid of Theorem 1.1 in [33. As one of the possible vari- 

ants of the solution of the problem, let us examine the case when for motion (5) the func- 

tion H, (t, Ej, ri) is positive definite and admits of an infinitesimal upper bound. 

We take it to be a Liapunov function and we find its derivative relative to the Eqs.(G), 
(7) of perturbed motion, 

(iii, DH,, -z--L 
111 dt I 

By examining the expression 
11. II 

B[ff,, t, Ej, qi, P,] = z$+ ,IE ‘$ J’z + F(t, Ej, ri) + 2 PijPiPj 
a=k’+1 1 i,j=K+l 

and its partial derivatives with respect to P,, we find that 

(15) 

Consequently, the following theorem is valid. 
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Theorem ;?. If for the unperturbed motion (5) the function Hi (t, El, IJ~) is po- 
sitive definite and admits of an infinitesimal upper bound, it is the optimal tiapunov 

function for system (S),(y) optimized by controls (15) with respect to the functional 

I =[[-%+ i PijP,“Pj”+ i PijPiPj]dt (16) 
La i. jdijl i. j=k+l 

under the condition that the function 

is negative definite, 
We now look at the case when the Hamiltonian function N does not depend explicitly 

on time and all the nonpotential generalized forces Qi = 0 (i = l,... , n). For fixed 

values of pa = C, and for specified initial conditions.system(l) admits of the solution 

qj = Qjot Q= = 4 ~(t - to) + qao7 Pi = Pi0 fas) 

(i=l,...,n; ,i=l,..., k; u=k-j-1 ,I.., n) 

describing the steady-state motion of the system. In particular, if all Quo =1 pi@ = 0, 
solution (18) describes the equilibrium of the system. The constants Pjop pjo, qao are 

determined by the equations 

The equations of perturbed motion of the reduced system have the form of Eqs. (8) whose 

right-hand sides for motion (18) do not depend expliditly on time, and, in particular. all 
coefficients p,; and qsa are constants. 

As follows from control theory @], the problem of the optimal control of the linear 

system 

obtained from system (8) by discarding the nonlinear terms xS, has a solution if and 
only if the rank of the matrix 

K = {Q, PQ, ,.., LJ”‘i-l Q> 

equals 2k, where P and Q are the matrices of coefficients P.vi and qsot. Here 

the control U, (1), solving the problem of damping the linear system, is determined by 
the maximum principle E2] (see (17.1)) ; the solution of the linearized system can be 
extended also to the original nonlinear problem. 

In [5] it was shown that for the optimal stabilization of motion (18) by forces applied 
to the system relative to the ignorable coordinates, it is sufficient to fulfill the condition 
rank h = 2k for system (20). For an autonomous system of form (8) this condition 
can be necessary only if among the roots of the characteristic equation 

dot i/ P - hE,, ji == 0 

for system (20) there are roots with positive real parts. If the multiplicity of the zero 

root of this equation is greater than II - k, then the indicated stabilization is impossible. 

The latter assertion is connected with the least possible dimension of the control vector 

l-61. 
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Let us examine the function H, (Ej, qi) and its time derivative relative to system 
(6), (7). According to Liapunov’s stability theorem the steady-state motion (18) is stable 
with respect to the position coordinates and to all the momenta if the function H, (Ej, 
Iii) is positive definite in all the variables gj, qi, while its time derivative is nonpo- 
sitive definite. Here, if the manifold M, defined by the equation 

does not contain the integral motions of the system besides the motion Ej = rli = 0, 

then according to the Barbashin-Krasovskii theorem, motion (18) is asymptotically sta- 

ble with respect to those same variables. 
Let us consider, in particular, controls of the form 

P, == - dH,;ilq, (u = k f 1, . ..( n) (22) 

Then 

(111, 
Bt = - & i$J’ 

In this case the manifold l%!f is defined by the equations 

where the ellipsis denotes the collection of terms of higher than first order in smallness. 
Since 

Eq. (23) can always be solved with respect to qa, 

% = fa 67 %) (r=k+i, . . ..r!) (24) 

Under conditions (23) Eq. (7) has the integrals ra = Consf, therefore, relations (24) are 
the first integrals of Eqs. (6). Here we should distinguish whether or not the functions 

f, depend on Ilj. In the first case relations (24) are integrals linear in rj,. Since linear 
integrals are possessed only by those dynamic systems which either have ignorable co- 
ordinates or can be transformed into systems with ignorable coordinates [7], we have 

that under the assumption that Eqs. (1) do not admit of any linear integrals whatsoever 
besides the integrals pa - Ca, there can be no integrals of form (24) in system (6), 
and manifold (23) does not contain integral motions besides gj = qi = 0. In the se- 
cond case, when the functions f, do not depend on Tj, such motions are, in general, pos- 
sible. Thus, we arrive at the following assertion. 

Theorem 3. If the function H, (Ej, Iii) is positive definite, it is the optimal 
Liapunov function for the system of autonomous Eqs. (6), (7), optimized by controls 
(22) with respect to the functional 

under the condition that manifold (23) does not contain integral motions of the system 
besides cj = rli = 0. 
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We note that this result abuts Theorem ‘2.1 of [B]. Forces of form (22) are dissipative 

forces -&’ applicable to the system with respect to the appropriate ignorable coor- 
dinates. 

Note 2. The problem of control and stabilization of the motions of systems with 
ignorable coordinates includes within itself, as a special case, the problem of control 

and stabilization of relative motions and of the equilibria of a holonomic system rela- 

tive to a fixed coordinate system OX~X~X~, performing a known motion. Indeed, the 
system’s motion relative to the fixed axes can be described by Hamiltonian equations 
of form (3) set up for an absolute motion if as the generalized coordinates qj we take 

the independent variables defining the position of the system relative to the moving 
coordinate system. Here the Hamiltonian function H depends not only on qj and pi 
but also on the projections of the velocity of the origin of the moving coordinate systems 
and its absolute angular velocity which in equations of form (3) play the role of controls. 

Example 1. A heavy point P of mass m is located on a material circle of radius 

a with center at 0, lying in a vertical plane, which can rotate without friction around 
its vertical diameter. The position of the circle is determined by the angle II, its plane 

forms with a certain fixed plane, while the position of the point on the circle is deter- 
mined by the angle 6 between the downward vertical and the radius OP. The moment 

of inertia of the circle relative to the diameter equals 1. By p1 and pa we denote the 

generalized momenta corresponding to the angles 0 and 9, and we write down the 

Hamiltonian function 

The equations of form (19) have the roots 
PI0 = 0, Bo=O, n 

for any constant value p2 = c, as well as the root 

00 = arccos& ( 

C 
o = I + nza2 sin” 80 ’ p10 = 0 

for the values c > C* = ZJf/gla. On the ( 8, p2)-plane these solutions are represented by 

three brances, 0 = 0, Cl = a~ and O = arc cos g/am2 , of the “equilibrium” curve. We 

see that the steady-state motions are stable relative to 8, pl, ~2 for points of the first 
branch for 0 < c < c* and for points of the third branch for c > c* , and are unstable 

for points of the first branch for c > c* and for all points of the second branch. 

In this case the function H, (E, Q, qs) has the form 

HI (E,lTlI, r12) = + [S + I+ ,,;;,2’1H,+a1- -+ 1 ;:,I?L;11,: & - 

- mga [cos (Cl0 + 5) - COS 001 

Since the quantities 
l3”H maze sin 20 dlH 

aedpa=- (I + mu2 sinA 0)2 ’ 
-=o 
i3Pl ap2 

we have that for all points of the first and second branches the system is uncontrollable 
in the first approximation by an ignorable momentum, while it is controllable for points 

of the third branch for which rank K = 2 . By examining the functions HI (k ~1, 0) 
and HI (E, ~1, Q) and their time derivatives by virtue of Ess. (6) of perturbed motion 
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according to Theorems 1 and 3 we find that controls of form (12) or (22) 

%O=- 2B[If 
qsin2(80+E) 

V& sin” (C, + E)]” + vi sin 2 (90 + 4) ’ 

Pa0 = 
C c -I- v2 

I + ma” sin* 90 - I + ma2 sine@0 _1- 5) 

stabilize up to asymptotic stability with respect to the variables E, q1 or the variables 

5, qr, Q, respectively, the steady-state motions corresponding to the stable points of 

the first branch. Here they minimize an integral of form (10) or an integral of form 
(25), since in both cases the manifold M does not contain integral motions besides the 

unperturbed one. For points of the third branch these manifolds contain the integral 

motions E = const, as a consequence of which the controls indicated ensure only the 
asymptotic tendency of the perturbed motion to one of the steady-state motions suffici- 

ently close to the unperturbed motion. 

let us now consider the question of stabilizing the relative equilibria of the heavy 
point on the circle for the case when an external force moment ensuring $\I’ = a= const 

has been applied to the circle. The Hamiltonian function and the equations of relative 

motion of the point have the form 

ff(Cl,pI,\l’.)=+g 1 
- 2 mazq2 sin2 0 - mga cos 0 

We see that the relative equilibria of the point and the nature of their stability are the 

same as for the steady-state motions examined above. By setting 9 = I&, + 5, JQ = 

n, $ = o + 5 in the perturbed motion, we consider the function 

1 1 
- 2 mu2 siua (I30 + E,) o2 - mga [cos (eO + 5) - cos eo] j- 2 m$& sin2 80 

and its time derivative by virtue of the equations of perturbed motion 

dH,ldt = Vz q (Ca + 2 05) sin 2 (0, + E) 

In accordance with Theorem 1 we find that controls of form (12) 

c0rI sin 2 (90 + E) 
5” Z - 2p $ sin 2 (e. + 4)q 

stabilize up to asymptotic stability with respect to the variables E, n the relative equi- 
libria corresponding to the stable points of the first branch and minimize an integral of 
form (lo), since manifold M does not contain integral motions besides the unperturbed 
one. For points of the third branch this manifold M contains the integral motions E = 

const. 

Example 2. let us consider the motion of a heavy gyroscope in a gimbal suspen- 
sion for the case when the axis of the outer gimbal is vertical. Retaining the notation 
in [9], we write out the Hamiltonian function 

11 (0, pl, pL, p3) = + 
p12 (p2 - p3 cos 0)3 

A + ‘41 + (A + &) sir? 9 + C1 co9 e + AZ 
+ ‘$-I+ pzo cos e 

The equations of toe form (19) have solutions for which 

tt = eo, p1= 0, $1 = 8, r= 0 
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under the condition that the constants BO, 52, w satisfy the relation (2.2) in [9]. Setting 

up the matrix h’, we can show that for the solutions B0 = 0, x the system in the first 

approximation is uncontrollable by the ignorable momenta Pa and p3, while for the 

solution 6 # 0, x is controllable. The steady-state motion, for which 6, = 0, is stable 

if condition (2.8) in [9] is fulfilled. Such a stable motion can be stabilized up to asymp- 
totic stability by forces of form (‘23) and minimize an integral of form (25). 

1. 
2. 
3. 

4. 
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We pose the problem of stabilization with respect to position coordinates and 

velocities of the steady-state motions of holonomic mechanical systems by 
means of forces acting only on the ignorable coordinates. The problem is 
reduced to the stabilization of the trivial solution of a certain system of dif- 
ferential equations, in which perturbations of the ignorable momenta are trea- 
ted as the controls. As an example we examine the asymptotic stabilization 
of the relative equilibrium positions of a gyrostat satellite in a circular orbit. 

1, We consider a holonomic scleronomous mechanical system with n degrees of 
freedom. Let q,. be the genera!ized coordinates, qr’, p,. (r == I,.... n) be the gene- 
ralized velocities and momenta, 1’ and 11 be the kinetic and potential energies, res- 


